[image:]

Data Engineering Guide

Databricks SQL Performance Analysis Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Query performance analysis is a critical discipline for maintaining responsive analytics platforms. Poorly performing queries not only frustrate users but can cascade into resource contention that affects the entire organization. This guide provides a systematic approach to identifying, analyzing, and resolving performance issues in Databricks SQL.
The Cost of Poor Performance
Performance problems manifest in multiple ways:
User Experience: Slow dashboards lead to decreased adoption and shadow IT solutions
Resource Contention: Long-running queries block other users and increase queue times
Cost Escalation: Inefficient queries consume more compute resources than necessary
Opportunity Cost: Analysts spend time waiting instead of deriving insights
Performance Analysis Methodology
Effective performance optimization follows a systematic approach:
Identify: Use query history and monitoring to find problematic queries
Analyze: Understand execution plans and resource utilization
Optimize: Apply targeted improvements based on root cause
Validate: Measure improvement and prevent regression
This guide equips data engineers and analysts with the tools and techniques to execute this methodology effectively.
2. Query Profiling Fundamentals
Before optimizing a query, you must understand how it executes. Databricks SQL provides multiple tools for analyzing query behavior.
2.1 Query Profile Interface
The Query Profile provides a visual representation of query execution, showing how data flows through operations and where time is spent.
Accessing Query Profile:
Navigate to SQL Editor or Query History
Click on a completed query
Select the "Profile" tab
Key Metrics to Examine:
	Metric
	Description
	Warning Signs

	Total Duration
	End-to-end execution time
	> 30s for interactive queries

	Rows Scanned
	Data read from storage
	>> Rows returned indicates filter issues

	Bytes Scanned
	Data volume processed
	Large scans without partition pruning

	Spill to Disk
	Memory overflow operations
	Any spill indicates memory pressure

	Queue Time
	Wait before execution
	> 5s indicates capacity issues

2.2 EXPLAIN Plan Analysis
The EXPLAIN command provides programmatic access to execution plans. Understanding plan operators is essential for optimization.
Basic EXPLAIN:
EXPLAIN
SELECT
 c.customer_segment,
 COUNT(DISTINCT o.customer_id) as customers,
 SUM(o.amount) as total_revenue,
 AVG(o.amount) as avg_order_value
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id
WHERE o.order_date >= '2025-01-01'
GROUP BY c.customer_segment;
EXPLAIN Variants:
-- Extended plan with statistics and partition info
EXPLAIN EXTENDED SELECT ...;

-- Cost estimates for optimizer decisions
EXPLAIN COST SELECT ...;

-- Human-readable formatted output
EXPLAIN FORMATTED SELECT ...;

-- Codegen details for Photon analysis
EXPLAIN CODEGEN SELECT ...;
2.3 Understanding Plan Operators
Execution plans consist of operators that form a tree structure. Understanding common operators helps identify optimization opportunities.
Scan Operators:
	Operator
	Description
	Optimization Focus

	FileScan
	Reads data from Delta files
	Partition pruning, file pruning

	BatchScan
	Vectorized Delta read
	Column pruning, statistics

Join Operators:
	Operator
	When Used
	Performance

	BroadcastHashJoin
	Small table (< 10MB default)
	Fast, no shuffle

	ShuffledHashJoin
	Medium tables
	Moderate, shuffle required

	SortMergeJoin
	Large tables
	Expensive, requires sort

	BroadcastNestedLoopJoin
	Cross joins, non-equi joins
	Very expensive

Aggregation Operators:
	Operator
	Description
	Notes

	HashAggregate
	Hash-based grouping
	Memory intensive

	SortAggregate
	Sort-based grouping
	Used when hash doesn't fit

	ObjectHashAggregate
	Complex types
	Slower than primitive types

3. Identifying Performance Issues
Proactive identification of performance problems prevents user-impacting issues.
3.1 Query History Analysis
System tables provide comprehensive query execution data for analysis.
Find Slowest Queries:
SELECT
 query_id,
 user_name,
 SUBSTRING(query_text, 1, 200) as query_preview,
 duration / 1000 as duration_seconds,
 rows_produced,
 bytes_scanned / (1024*1024*1024) as gb_scanned,
 ROUND(bytes_scanned / NULLIF(duration, 0) / 1024, 2) as mb_per_second
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
 AND status = 'FINISHED'
 AND duration > 30000 -- Over 30 seconds
ORDER BY duration DESC
LIMIT 50;
Identify Scan-Heavy Queries (potential missing filters):
SELECT
 query_id,
 user_name,
 SUBSTRING(query_text, 1, 200) as query_preview,
 rows_produced,
 bytes_scanned / (1024*1024*1024) as gb_scanned,
 ROUND(bytes_scanned / NULLIF(rows_produced, 0) / 1024, 2) as kb_per_row
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
 AND status = 'FINISHED'
 AND rows_produced < 1000
 AND bytes_scanned > 1073741824 -- Over 1 GB
ORDER BY bytes_scanned DESC
LIMIT 20;
Find Frequently Failing Queries:
SELECT
 SUBSTRING(query_text, 1, 200) as query_preview,
 COUNT(*) as failure_count,
 COLLECT_SET(error_message)[0] as sample_error,
 COUNT(DISTINCT user_name) as affected_users
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
 AND status = 'FAILED'
GROUP BY SUBSTRING(query_text, 1, 200)
HAVING COUNT(*) > 3
ORDER BY failure_count DESC;
3.2 Resource Utilization Patterns
Understanding resource consumption helps with capacity planning and identifying resource-intensive workloads.
Hourly Resource Consumption:
SELECT
 DATE_TRUNC('hour', start_time) as hour,
 COUNT(*) as query_count,
 SUM(bytes_scanned) / (1024*1024*1024*1024) as tb_scanned,
 AVG(duration) / 1000 as avg_duration_seconds,
 MAX(duration) / 1000 as max_duration_seconds,
 COUNT(DISTINCT user_name) as unique_users
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
 AND status = 'FINISHED'
GROUP BY 1
ORDER BY 1;
User-Level Resource Analysis:
SELECT
 user_name,
 COUNT(*) as query_count,
 SUM(duration) / 1000 / 60 as total_minutes,
 SUM(bytes_scanned) / (1024*1024*1024) as total_gb_scanned,
 AVG(duration) / 1000 as avg_duration_seconds,
 COUNT(*) FILTER (WHERE duration > 60000) as slow_queries
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
 AND status = 'FINISHED'
GROUP BY user_name
ORDER BY total_minutes DESC
LIMIT 20;
3.3 Queue Time Analysis
High queue times indicate capacity issues that affect all users.
SELECT
 DATE_TRUNC('hour', start_time) as hour,
 COUNT(*) as query_count,
 AVG(queue_duration) / 1000 as avg_queue_seconds,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY queue_duration) / 1000 as median_queue_seconds,
 PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY queue_duration) / 1000 as p95_queue_seconds,
 MAX(queue_duration) / 1000 as max_queue_seconds
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
GROUP BY 1
HAVING AVG(queue_duration) > 1000
ORDER BY 1;
4. Common Performance Anti-Patterns
Understanding anti-patterns helps prevent performance issues before they occur.
4.1 Full Table Scans
Full table scans read every row in a table, regardless of the result set size. This is the most common performance issue.
Symptoms:
Large bytes_scanned relative to rows_produced
Scan operation shows no partition pruning in EXPLAIN
Query duration scales linearly with table size
Detection:
-- Find queries with scan efficiency issues
SELECT
 query_id,
 SUBSTRING(query_text, 1, 300) as query_preview,
 rows_produced,
 bytes_scanned / (1024*1024) as mb_scanned,
 CASE
 WHEN rows_produced > 0 THEN bytes_scanned / rows_produced
 ELSE bytes_scanned
 END as bytes_per_row
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
 AND status = 'FINISHED'
 AND bytes_scanned > 104857600 -- Over 100 MB
 AND (rows_produced = 0 OR bytes_scanned / rows_produced > 10240) -- Over 10KB per row
ORDER BY bytes_scanned DESC
LIMIT 20;
Solutions:
-- BEFORE: Full table scan (no partition filter)
SELECT * FROM events WHERE event_type = 'click';

-- AFTER: Add partition filter
SELECT * FROM events
WHERE event_date >= '2025-01-01'
 AND event_type = 'click';

-- Verify partition pruning in EXPLAIN
EXPLAIN SELECT * FROM events
WHERE event_date >= '2025-01-01'
 AND event_type = 'click';
-- Look for: PartitionFilters: [event_date >= 2025-01-01]
4.2 Cartesian Products (Cross Joins)
Cartesian products multiply row counts, creating exponential data expansion.
Symptoms:
Query produces far more rows than either input table
BroadcastNestedLoopJoin in execution plan
Extremely long execution times or out-of-memory errors
Detection:
-- Find queries with row explosion
SELECT
 query_id,
 SUBSTRING(query_text, 1, 300) as query_preview,
 rows_produced,
 bytes_scanned / (1024*1024) as mb_scanned
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
 AND status = 'FINISHED'
 AND rows_produced > 100000000 -- Over 100M rows
ORDER BY rows_produced DESC
LIMIT 10;
Solutions:
-- BEFORE: Accidental cross join (missing ON clause)
SELECT a.*, b.*
FROM table_a a, table_b b
WHERE a.status = 'active';

-- AFTER: Explicit join condition
SELECT a.*, b.*
FROM table_a a
JOIN table_b b ON a.id = b.table_a_id
WHERE a.status = 'active';
4.3 Expensive String Operations
String operations are significantly slower than numeric operations, especially in filters.
Problem Patterns:
-- SLOW: Function on filter column
SELECT * FROM customers WHERE UPPER(email) = 'USER@EXAMPLE.COM';

-- SLOW: LIKE with leading wildcard (can't use indexes)
SELECT * FROM products WHERE name LIKE '%widget%';

-- SLOW: Complex regex in WHERE clause
SELECT * FROM logs WHERE REGEXP_EXTRACT(message, '.*ERROR.*') IS NOT NULL;
Optimized Approaches:
-- FAST: Store data in canonical form
SELECT * FROM customers WHERE email_upper = 'USER@EXAMPLE.COM';

-- FAST: Create search column or use full-text index
SELECT * FROM products WHERE name_tokens CONTAINS 'widget';

-- FAST: Pre-filter with simple operations
SELECT * FROM logs
WHERE log_level = 'ERROR' -- Pre-filtered column
 AND message LIKE '%specific error%';
4.4 Suboptimal Join Patterns
Join order and type significantly impact performance.
Small-Large Table Joins:
-- Let optimizer decide (may not choose broadcast)
SELECT f.*, d.dimension_name
FROM fact_table f
JOIN dim_table d ON f.dim_id = d.id;

-- Force broadcast for small dimension (< 100MB)
SELECT /*+ BROADCAST(d) */ f.*, d.dimension_name
FROM fact_table f
JOIN dim_table d ON f.dim_id = d.id;
Multiple Joins Optimization:
-- Poor: Random join order
SELECT *
FROM table_a a
JOIN table_b b ON a.id = b.a_id
JOIN table_c c ON b.id = c.b_id
JOIN table_d d ON c.id = d.c_id;

-- Better: Start with most filtered table, join smallest tables first
SELECT /*+ BROADCAST(lookup1), BROADCAST(lookup2) */ *
FROM fact_filtered f
JOIN lookup1 l1 ON f.lookup1_id = l1.id
JOIN lookup2 l2 ON f.lookup2_id = l2.id
JOIN large_dim d ON f.dim_id = d.id;
4.5 Inefficient Aggregations
Aggregation performance depends on data distribution and grouping cardinality.
High-Cardinality GROUP BY:
-- SLOW: Grouping by unique identifier
SELECT customer_id, COUNT(*)
FROM orders
GROUP BY customer_id; -- Millions of groups

-- Consider: Pre-aggregation or approximate functions
SELECT APPROX_COUNT_DISTINCT(customer_id) as unique_customers
FROM orders;
Multiple Aggregations:
-- SLOW: Multiple passes over data
SELECT
 (SELECT SUM(amount) FROM orders) as total,
 (SELECT AVG(amount) FROM orders) as average,
 (SELECT COUNT(*) FROM orders) as count;

-- FAST: Single pass
SELECT
 SUM(amount) as total,
 AVG(amount) as average,
 COUNT(*) as count
FROM orders;
5. Optimization Techniques
This section covers specific techniques for improving query performance.
5.1 Predicate Pushdown Optimization
Predicate pushdown moves filters as close to data sources as possible, reducing data read.
Verify Pushdown in EXPLAIN:
EXPLAIN SELECT * FROM orders WHERE order_date = '2025-01-15';

-- Good output shows:
-- PushedFilters: [order_date = 2025-01-15]
-- PartitionFilters: [order_date = 2025-01-15]
Ensure Pushdown-Compatible Predicates:
-- Pushdown works
WHERE order_date = '2025-01-15'
WHERE status IN ('ACTIVE', 'PENDING')
WHERE amount > 100

-- Pushdown may not work
WHERE YEAR(order_date) = 2025 -- Function on column
WHERE status = UPPER(input_status) -- Runtime value
WHERE EXISTS (SELECT 1 FROM ...) -- Subquery
5.2 Column Pruning
Read only required columns to minimize I/O.
-- BEFORE: Reads all columns
SELECT * FROM wide_table WHERE id = 123;

-- AFTER: Reads only needed columns
SELECT id, name, created_date FROM wide_table WHERE id = 123;
For Complex Queries with CTEs:
-- BEFORE: CTE selects all columns
WITH base AS (
 SELECT * FROM transactions
 WHERE tx_date >= '2025-01-01'
)
SELECT customer_id, SUM(amount) FROM base GROUP BY 1;

-- AFTER: CTE selects only needed columns
WITH base AS (
 SELECT customer_id, amount
 FROM transactions
 WHERE tx_date >= '2025-01-01'
)
SELECT customer_id, SUM(amount) FROM base GROUP BY 1;
5.3 Statistics-Based Optimization
Accurate statistics enable better optimizer decisions.
Collect Comprehensive Statistics:
-- After major data loads
ANALYZE TABLE orders COMPUTE STATISTICS;

-- For join columns (critical for join strategy selection)
ANALYZE TABLE orders
COMPUTE STATISTICS FOR COLUMNS customer_id, product_id, order_date;

-- View current statistics
DESCRIBE EXTENDED orders;

-- Check column statistics
DESCRIBE EXTENDED orders customer_id;
Statistics Update Strategy:
	Scenario
	Recommended Action

	Initial table load
	ANALYZE TABLE COMPUTE STATISTICS FOR ALL COLUMNS

	Daily incremental load
	ANALYZE TABLE COMPUTE STATISTICS

	Major schema change
	Re-collect all statistics

	Join performance issues
	Analyze join columns specifically

5.4 Materialized View Optimization
Materialized views pre-compute expensive aggregations for dashboard queries.
Create Materialized View:
CREATE MATERIALIZED VIEW daily_sales_summary AS
SELECT
 order_date,
 product_category,
 COUNT(*) as order_count,
 SUM(amount) as total_amount,
 AVG(amount) as avg_amount
FROM orders o
JOIN products p ON o.product_id = p.id
GROUP BY order_date, product_category;
Query Rewrite (automatic when enabled):
-- Original query
SELECT order_date, SUM(total_amount)
FROM daily_sales_summary
WHERE order_date >= '2025-01-01'
GROUP BY order_date;

-- Optimizer rewrites to use materialized view instead of base tables
Refresh Strategies:
-- Manual refresh
REFRESH MATERIALIZED VIEW daily_sales_summary;

-- Scheduled refresh (via Databricks Jobs)
-- Set up job to run: REFRESH MATERIALIZED VIEW daily_sales_summary;
5.5 Caching Strategies
Leverage caching to accelerate repeated queries.
Result Cache Optimization:
-- Ensure deterministic queries for cache hits
-- BAD: Non-deterministic
SELECT *, CURRENT_TIMESTAMP() FROM orders;

-- GOOD: Deterministic
SELECT * FROM orders WHERE order_date = '2025-01-15';
Delta Cache Warming:
-- Read frequently accessed data to populate cache
SELECT COUNT(*) FROM dimension_table;
SELECT COUNT(*) FROM hot_partition WHERE date = CURRENT_DATE;
6. Performance Testing Methodology
Systematic testing ensures optimizations are effective and don't regress.
6.1 Baseline Establishment
Before optimizing, establish clear baselines.
-- Record baseline metrics
SELECT
 query_id,
 duration,
 bytes_scanned,
 rows_produced,
 query_text
FROM system.query.history
WHERE query_text LIKE '%your_query_pattern%'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
ORDER BY execution_end_time DESC;
6.2 A/B Testing Queries
Compare original and optimized queries systematically.
-- Original query
SELECT /*+ QUERY_TAG('baseline') */
 customer_segment,
 SUM(amount) as total
FROM orders o
JOIN customers c ON o.customer_id = c.id
WHERE YEAR(order_date) = 2025
GROUP BY customer_segment;

-- Optimized query
SELECT /*+ QUERY_TAG('optimized') */
 customer_segment,
 SUM(amount) as total
FROM orders o
JOIN customers c ON o.customer_id = c.id
WHERE order_date >= '2025-01-01' AND order_date < '2026-01-01'
GROUP BY customer_segment;
Compare Results:
SELECT
 CASE WHEN query_text LIKE '%baseline%' THEN 'baseline' ELSE 'optimized' END as version,
 AVG(duration) as avg_duration,
 AVG(bytes_scanned) as avg_bytes_scanned
FROM system.query.history
WHERE (query_text LIKE '%baseline%' OR query_text LIKE '%optimized%')
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 1 HOUR
GROUP BY 1;
6.3 Load Testing
Test query performance under realistic concurrency.
Concurrent Query Pattern:
import concurrent.futures
from databricks import sql
import time

def run_query(query_id, connection_params, query):
 conn = sql.connect(**connection_params)
 cursor = conn.cursor()

 start = time.time()
 cursor.execute(query)
 result = cursor.fetchall()
 duration = time.time() - start

 cursor.close()
 conn.close()

 return {'query_id': query_id, 'duration': duration, 'rows': len(result)}

Run 10 concurrent queries
connection_params = {
 'server_hostname': 'your-workspace.cloud.databricks.com',
 'http_path': '/sql/1.0/warehouses/your-warehouse-id',
 'access_token': 'your-token'
}

test_query = "SELECT * FROM orders WHERE order_date = '2025-01-15'"

with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
 futures = [
 executor.submit(run_query, i, connection_params, test_query)
 for i in range(10)
]
 results = [f.result() for f in futures]

for r in results:
 print(f"Query {r['query_id']}: {r['duration']:.2f}s, {r['rows']} rows")
7. Monitoring and Alerting
Continuous monitoring prevents performance degradation.
7.1 Performance Dashboard Queries
Create dashboards to track performance trends.
Query Performance Trends:
SELECT
 DATE_TRUNC('day', start_time) as day,
 COUNT(*) as query_count,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY duration) / 1000 as median_duration_s,
 PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY duration) / 1000 as p95_duration_s,
 PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY duration) / 1000 as p99_duration_s
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 30 DAYS
 AND status = 'FINISHED'
GROUP BY 1
ORDER BY 1;
Warehouse Capacity Utilization:
SELECT
 DATE_TRUNC('hour', start_time) as hour,
 COUNT(*) as total_queries,
 COUNT(*) FILTER (WHERE queue_duration > 5000) as queued_queries,
 ROUND(100.0 * COUNT(*) FILTER (WHERE queue_duration > 5000) / COUNT(*), 2) as queue_pct,
 AVG(queue_duration) / 1000 as avg_queue_s
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
GROUP BY 1
HAVING COUNT(*) > 10
ORDER BY 1;
7.2 Alert Conditions
Set up alerts for performance degradation.
Slow Query Alert:
-- Alert if queries exceed threshold
SELECT COUNT(*) as slow_query_count
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 1 HOUR
 AND status = 'FINISHED'
 AND duration > 300000 -- 5 minutes
HAVING COUNT(*) > 5;
High Queue Time Alert:
-- Alert if average queue time exceeds threshold
SELECT AVG(queue_duration) / 1000 as avg_queue_seconds
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 15 MINUTES
HAVING AVG(queue_duration) > 30000; -- 30 seconds
Error Rate Alert:
-- Alert if error rate exceeds threshold
SELECT
 COUNT(*) FILTER (WHERE status = 'FAILED') as failures,
 COUNT(*) as total,
 ROUND(100.0 * COUNT(*) FILTER (WHERE status = 'FAILED') / COUNT(*), 2) as error_rate
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND start_time > CURRENT_TIMESTAMP - INTERVAL 1 HOUR
HAVING 100.0 * COUNT(*) FILTER (WHERE status = 'FAILED') / COUNT(*) > 5;
8. Troubleshooting Guide
Quick reference for common performance issues.
8.1 Issue: Query Runs Slowly Only Sometimes
Possible Causes:
Cache invalidation (underlying data changed)
Resource contention during peak hours
Statistics stale after data load
Diagnosis:
SELECT
 execution_end_time,
 duration / 1000 as duration_s,
 queue_duration / 1000 as queue_s,
 bytes_scanned / (1024*1024) as mb_scanned
FROM system.query.history
WHERE query_text LIKE '%your_query_pattern%'
ORDER BY execution_end_time DESC
LIMIT 20;
8.2 Issue: Dashboard Timeouts
Possible Causes:
Too many visualizations refreshing simultaneously
Queries not optimized for interactivity
Warehouse undersized for workload
Solutions:
Stagger refresh schedules for dashboard panels
Use materialized views for complex aggregations
Increase warehouse size or enable auto-scaling
Set appropriate query timeouts
8.3 Issue: Out of Memory Errors
Possible Causes:
Cartesian product / exploding joins
High-cardinality aggregations
Collect operations on large datasets
Diagnosis:
SELECT
 query_id,
 query_text,
 error_message
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
 AND status = 'FAILED'
 AND error_message LIKE '%memory%'
ORDER BY execution_end_time DESC;
Solutions:
Verify all joins have proper conditions
Use APPROX_COUNT_DISTINCT for cardinality estimates
Avoid COLLECT_LIST/COLLECT_SET on large groups
Increase warehouse size for legitimate large operations
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

